Classification Aided Cardinalized Probability Hypothesis Density Filter
نویسندگان
چکیده
Target class measurements, if available from automatic target recognition systems, can be incorporated into multiple target tracking algorithms to improve measurement-to-track association accuracy. In this work, the performance of the classifier is modeled as a confusion matrix, whose entries are target class likelihood functions that are used to modify the update equations of the recently derived multiple models CPHD (MMCPHD) filter. The result is the new classification aided CPHD (CACPHD) filter. Simulations on multistatic sonar datasets with and without target class measurements show the advantage of including available target class information into the data association step of the CPHD filter.
منابع مشابه
Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملBox-Particle Implementation and Comparison of Cardinalized Probability Hypothesis Density Filter
This paper develops a box-particle implementation of cardinalized probability hypothesis density filter to track multiple targets and estimate the unknown number of targets. A box particle is a random sample that occupies a small and controllable rectangular region of nonzero volume in the target state space. In box-particle filter the huge number of traditional point observations is instead by...
متن کاملAcoustic Channel Tracking with the Cardinalized Probability Hypothesis Density Filter and the Multiple Hypothesis Tracker
Two datasets, one simplistic that assumes direct observation of paths and the other based on observations derived from compressed sensing and an assumed OFDM communications underpinning, simulate underwater acoustic channels. The Cardinalized Probability Hypothesis Density filter and the Multiple Hypothesis Tracker are applied to these wireless channels. The performances of the two trackers are...
متن کاملExtended Target Tracking with a Cardinalized Probability Hypothesis Density Filter, Report no. LiTH-ISY-R-2999
This technical report presents a cardinalized probability hypothesis density (CPHD) lter for extended targets that can result in multiple measurements at each scan. The probability hypothesis density (PHD) lter for such targets has already been derived by Mahler and a Gaussian mixture implementation has been proposed recently. This work relaxes the Poisson assumptions of the extended target PHD...
متن کاملImage Registration Using Single Cluster PHD Methods
When telescopes are exploited for the observation of orbiting objects, images are often distorted by diurnal motion and also by the motion of the imaging apparatus during acquisition, causing a significant drift across image sequences. The drift of normally static objects, such as the stars in the background, can be exploited to correct the effect of the drift and recalibrate the sequence of im...
متن کامل